Tagged "open science"

Tests-Questionnaires

NOVA - Next-Generation Open Vocabulary Assessment

NOVA (= Next-Generation Open Vocabulary Assessment) are two openly available, parallel vocabulary tests designed to measure the receptive vocabulary of German-speaking adults. Given the scarcity of modern, non-proprietary instruments, NOVA was developed to fill this gap, using Ant Colony Optimization to ensure high reliability, appropriate item difficulty and discrimination, and close parallelism across forms. The tests showed high conditional reliability in the lower ability range, making them well suited for individual assessment in neuropsychological contexts, and correlated strongly with a test of declarative knowledge. The test development, including the construction rationale, and the psychometric prorperties are described in detail in Schroeders & Achaa-Amankwaa, 2025. The norms are based on a large, heterogeneous sample of adults (N = 1,052). A Shiny app is available for scoring, allowing users to compute IRT-based norm scores and percentile ranks from individual response patterns. The items are available in the OSF project.

Method-Toolbox

Sample size estimation in Item Response Theory

Although Item Response Theory (IRT) models offer well-established psychometric advantages over traditional scoring methods, they have been largely confined to specific areas of psychology, such as educational assessment and personnel selection, while their broader potential remains underutilized in practice. One reason for this is the challenge of meeting the (presumed) larger sample size requirements, especially in complex measurement designs. Accurate a priori sample size estimation is essential for obtaining accurate estimates of item/person parameters, effects, and model fit. As such, it serves as an essential tool for effective study planning, especially in pre-registration and registered reports.

The Rosenberg Self-Esteem Scale - A drosophila melanogaster of psychological assessment

I had the great chance to co-author two recent publications of Timo Gnambs, both dealing with the Rosenberg Self-Esteem Scale (RSES; Rosenberg, 1965). As a reminder, the RSES is a popular ten item self-report instrument measuring a respondent’s global self-worth and self-respect. But basically both papers are not about the RSES per se, rather they are applications of two recently introduced powerful and flexible extensions of the Structural Equation Modeling (SEM) Framework: Meta-Analytic Structural Equation Modeling (MASEM) and Local Weighted Structural Equation Modeling (LSEM), which will be described in more detail later on.

Commitment to research transparency and open science

I signed the Commitment to Research Transparency and Open Science, which was initially worded by Felix Schönbrodt, Markus Maier, Moritz Heene, and Michael Zehetleitner from the LMU Munich. The first paragraph of this commitment summarizes the overall aim:


We embrace the values of openness and transparency in science. We believe that such research practices increase the informational value and impact of our research, as the data can be reanalyzed and synthesized in future studies. Furthermore, they increase the credibility of the results, as independent verification of the findings is possible.

Meta-heuristics in short scale construction

Reference. Schroeders, U., Wilhelm, O., & Olaru, G. (2016). Meta-heuristics in short scale construction: Ant Colony Optimization and Genetic Algorithm. PLOS ONE, 11, e0167110. doi:10.1371/journal.pone.0167110

Abstract. The advent of large-scale assessment, but also the more frequent use of longitudinal and multivariate approaches to measurement in psychological, educational, and sociological research, caused an increased demand for psychometrically sound short scales. Shortening scales economizes on valuable administration time, but might result in inadequate measures because reducing an item set could: a) change the internal structure of the measure, b) result in poorer reliability and measurement precision, c) deliver measures that cannot effectively discriminate between persons on the intended ability spectrum, and d) reduce test-criterion relations. Different approaches to abbreviate measures fare differently with respect to the above-mentioned problems. Therefore, we compare the quality and efficiency of three item selection strategies to derive short scales from an existing long version: a Stepwise COnfirmatory Factor Analytical approach (SCOFA) that maximizes factor loadings and two metaheuristics, specifically an Ant Colony Optimization (ACO) with a tailored userdefined optimization function and a Genetic Algorithm (GA) with an unspecific cost-reduction function. SCOFA compiled short versions were highly reliable, but had poor validity. In contrast, both metaheuristics outperformed SCOFA and produced efficient and psychometrically sound short versions (unidimensional, reliable, sensitive, and valid). We discuss under which circumstances ACO and GA produce equivalent results and provide recommendations for conditions in which it is advisable to use a metaheuristic with an unspecific out-of-the-box optimization function.